Assessment of some morphological and physiological traits in Aegilops species under salt stress conditions

Authors

1 Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Iran & Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

2 Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Iran.

3 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

4 Department of Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Iran.

Abstract

To study the effects of salinity on different species of Aegilops that have salinity tolerance genes, a factorial experiment was carried out using completely randomized design with three replications in Biotechnology Laboratory of Guilan University in 2014. Morphologic (length, fresh and dry weight of shoot and root, stem diameter, and number of tillers) and physiologic (Electrolyte Leakage, RWC, Chlorophyll content and antioxidants enzymes) traits of 12 Aegilops genotypes from four species; Ae. tauschii, Ae. crassa, Ae. cylindrical,and Ae. triuncialis were measured under salinity stress conditions. Assessment of morphological and physiological traits showed that genotypes belong to Ae. cylindrical had more tolerance to salinity stress than other genotypes. Genotype 575 from Ae. cylindrical as tolerant genotype and genotype 675 from Ae. crassa as susceptible genotype were identified and used for biochemical assay. The results showed peroxidase (POD) and ascorbate peroxidase (APX) enzymes' activity increased and catalase (CAT) enzyme activity decreased under salinity stress. Following stress treatment, enzyme activity in genotype 575 was higher than 675 showing antioxidant enzyme in tolerant genotype performs more than susceptible genotype.

Keywords


Akpinar, B. A., Kantar, M. and Budak, H. 2015. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct. Integr. Genomic. 15: 587-598.

 

 

Arzani, A., and Ashraf, M. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci. 35: 146-189.

 

 

Asada, K. 1992. Ascorbate peroxidase - a hydrogen peroxide‐scavenging enzyme in plants. Physiol. Plant. 85: 235-241.

 

 

Beauchamp, C., and Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287.

 

 

Blokhina, O., Virolainen, E., Fagerstedt, K. V.,  Dumas, F., Alscher, R. G., Erturk, N., Heath, L. S.,  Couée, I., Sulmon, C., Gouesbet, G., El Amrani, A.,  Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., Marzouk, B., Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194.

 

 

Bor, M., Özdemir, F. and Türkan, I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77-84.

 

 

Boughalleb, F., Abdellaoui, R., Nbiba, N., Mahmoudi, M. and Neffati. M. 2017. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia. 72: 1454-1466.

 

 

Breusgam, F. V., Vranove, E., Dat, J. F.  and Inze, D. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405-414.

 

 

Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W.,  Lazzarotto, F. and Margis-Pinheiro, M. 2012. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol.

 

 

Chance, B. and Maehly, A. C. 1955. Assay of catalase and peroxidase. Methods Enzymol. 2: 764-775.

 

 

Chen, Z., and. Gallie D. R. 2004. The ascorbic acid redox state controls guard cell signaling andstomata movement. Plant Cell 16: 1143-1162.

 

 

Çiçek, N., and Çakirlar, H. 2002. The Effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol. 28 (1-2): 66-74.

 

 

Demidchik, V., Straltsova, D., Medvedev, S. S.,  Pozhvanov, G. A., Sokolik, A. and Yurin, V. 2014. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65(5): 1259-1270.

 

 

Demiral, T., and Türkan, I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53: 247-257.

 

 

El-Hendawy, S. E., Hu, Y., Yakout, G. M.,  Awad, A. M., Hafiz, S. E. and Schmidhalter, U. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron. 22: 243-253.

 

 

Farooq, S., and Azam, F. 2001. Co-existence of salt and drought tolerance in Triticeae. Hereditas 135: 205-210.

 

 

Farooq, S., Niazi, M. L. K.,  Iqbal, N. and Shah, T. M. 1989. Salt tolerance potential of wild resources of the tribe Triticeae - II. Screening of species of the genus Aegilops. Plant Soil. 119: 255-260.

 

 

Ferreira, L. C., Cataneo, A. C.,  Remaeh, L. M. R.,  Corniani, N., Fumis, T. de F.,  Souza, Y. A. de., Scavroni, J. and A. Soares, B. J. 2010. Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pestic. Biochem. Phys. 97(1): 47-54.

 

 

Fidalgo, F., Santos, A., Santos, I. and Salema, R. 2004. Effects of long–term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann. Appl. Biol. 145(2): 185-192.

 

 

Filek, M., Walas, S., Mrowiec, H., Rudolphy-Skórska, E., Sieprawska, A. and Biesaga-Kościelniak, J. 2012. Membrane permeability and micro- and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiol. Plant. 34: 985-995.

 

 

Fricke, W., Bijanzadeh, E., Emam, Y. and Knipfer, T. 2014. Root hydraulics in salt-stressed wheat. Funct. Plant Biol.: 41: 366-378.

 

 

Hegde, S. G., Valkoun, J.  and Waines, J. G. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species - A preliminary survey. Crop Sci. 42: 608-614.

 

 

Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347: 1-32.

 

 

Jiang, J., Friebe, B. and Gill, B. S. 1994. Recent advances in alien gene transfer in wheat. Euphytica. 73: 199-12.

 

 

Kilian, B., Mammen, K., Millet, E., Sharma, R.,  Graner, A., Salamini, F., Hammer, K. and Özkan, H. 2011. Aegilops. Pp. 1-76. In: C. Kole (ed.) Wild crop relatives: genomic and breeding resources. Springer-Verlag Berlin Heidelberg.

 

 

Knight, H., and Knight, M. R. 2001. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 6(6): 262-267.

 

 

Lutts, S., Kinet, J. M.  and Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.

 

 

Mandhania, S., Madan, S. and Sawhney, V.  2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 50: 227-231.

 

 

Masoomi-Aladizgeh, F., Aalami, A., Esfahani, M.,  Aghaei, M. J. and Mozaffari, K. 2015. Identification of CBF14 and NAC2 genes in Aegilops tauschii associated with resistance to freezing stress. Appl. Biochem. Biotechnol. 176: 1059-1070.

 

 

Matsuoka, Y., Takumi, S. and Kawahara, T. 2007. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115: 509-518.

 

 

Meneguzzo, S., Navari-Izzo, F. and Izzo, R.  2000. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J. Plant Physiol. 156: 711-716.

 

 

Modhan, M. M., Narayanan, S. L. and Ibrahim, S. M. 2000. Chlorophyll stability index (CSI): its impacts on salt tolerance in rice. Int. Rice Res. Notes 25: 38-40.

 

 

Mudgal, V., Madaan, N. and Mudgal, A. 2010. Biochemical mechanisms of salt tolerance in plants: A review. Int. J. Bot. 6: 136-143.

 

 

Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.

 

 

Munns, R., James, R. A. and Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57(5): 1025-1043.

 

 

Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60(3): 324-349.

 

 

Quist-Jensen, C. A., Macedonio, F. and Drioli, E. 2015. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 364: 17-32.

 

 

Sade, N., Galkin, E. and Moshelion, M. 2015. Measuring Arabidopsis, Tomato and Barley leaf relative water content (RWC). Bio-Protocol. 5(8): 1451.

 

 

Schonfeld, M. A., Johnson, R. C.,  Carver, B. F. and Mornhinweg, D. W. 1988. Water relations in winter wheat as drought resistance indicators. Crop Sci. 28: 526.

 

 

Volaire, F., Thomas, H. and Leli`evre, F. 1998. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought. I. Growth, death, water relations and solute content in herbage and stubble. New Phytol. 140: 439-449.

 

 

Wang, D., Shannon, M. C. and Grieve, C. M. 2001. Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Res. 69: 267-277.

 

 

Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F. and Chu, C. 2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67: 589-602.

 

 

Wang, Y., He, F., Bao, Y., Ming, D., Dong, L.,  Han, Q.,  Li, Y. and Wang, H. 2016. Development and genetic analysis of a novel wheat-aegilops germplasm TA002 resistant to powdery mildew. Sci. Agric. Sin. 49: 418-428.