Differential expression of CsWRKY genes reduced damage in Soy protein hydrolysate-treated cucumber plants infected with Fusarium oxysporum

Document Type: Research Paper

Authors

1 - Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Science and Natural Resources University, 578, Sari, Iran - Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 Department of Plant protection, Faculty of Crop Sciences, Sari Agricultural Science and Natural Resources University, 578, Sari, Iran

3 Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

The biostimulant activity of soy protein hydrolysate on Fusarium oxysporum-inoculated cucumber plants was investigated in comparison with salicylic acid (SA). Cucumber seedlings were treated with trypsin-digested soybean (PrH) and SA followed by F. oxysporum inoculation, and were assessed for gene expression pattern, disease incidence (DI%), growth rate and biochemical responses. Results showed that F. oxysporum infection in PrH-treated plants decreased shoot and root dry weights by 4 and 18.2%, respectively, while these parameters were decreased 45 and 66.5% in SA-treated, and 42 and 65.9% in control plants. Glutathione peroxidase (GPx) activity was decreased in PrH-treated plants upon infection with higher rate compared to control plants while it was increased in SA-treated plants. Gene expression analysis revealed that, compared to other treatments, CsWRKY2 was expressed earlier and in higher rate in PrH-treated plants, and was negatively correlated with disease incidence leading to lowest disease infection (11.3 %) among treatments. These results suggest that PrH activates defense responses in cucumber plants against infection at the expense of reduced plant growth. Although the increase in CsWRKY2 expression enhances plant defense, but its over-expression higher than a threshold will negatively affect plant growth. By contrast, CsWRKY35 expression was negatively correlated with plant growth and its resistance against pathogen. The findings of the present study may pave the road for exploration of WRKY genes in cucumber breeding programs.

Keywords


Aziz, A., Heyraud, A. and. Lambert, B. 2004. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta. 218: 767-774.

 

 

Barzegargolchini, B., Movafeghi, A., Dehestani, A. and Mehrabanjoubani, P. 2017. Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J. Plant Physiol. 218: 127-134.

 

 

Caillot, S., Rat, S. Tavernier, M. L., Michaud, P., Kovensky, J., Wadouachi, A., Clément, C., Baillieul, F. and Petit, E. 2012. Native and sulfated oligoglucuronans as elicitors of defence-related responses inducing protection against Botrytis cinerea of Vitis vinifera. Carbohydr. Polym. 87: 1728-1736.

 

 

Cerdan, M., Sanchez-Sanchez, A., Oliver, M., Juarez, M. and Sanchez-Andreu, J. J. 2009. Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 830: 481-488.

 

 

Cesaratto, L., Vascotto, C., Calligaris, S. and Tell, G. 2004. The importance of redox state in liver damage. Ann. Hepatol. 3: 86-92.

 

 

Chen, W., and Qiu, Y. 2003. Leaf protein’s utilization status and its prospect. Food Sci. (Chinese). 24: 158–161.

 

 

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R. and Rouphael, Y. 2017. Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8: 2202.

 

 

Colla, G., Rouphael, Y., Canaguier, R., Svecova, E. and Cardarelli, M. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5: 448.

 

 

Dehestani, A., Ahmadian, G., H. Salmanian, A., Jelodar, N. B. and Kazemitabar, K. 2009. Transformation efficiency enhancement of Arabidopsis vacuum infiltration by surfactant application and apical inflorescence removal. Trakia J. Sci. 8: 19-26.

 

 

Ding, Z. J., Yan, J. Y., Li, C. X., Li, G. X., Wu, Y. R. and Zheng, S. J. 2015. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J.84: 56-69.

 

 

Dolatabadi, B., Ranjbar, G., Tohidfar, M. and Dehestani, A. 2014. Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f. sp. Lycopersici. J Plant Mol Breed. 2: 1-11.

 

 

Ertani, A., Schiavon, M., Muscolo, A. and Nardi, S. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 364: 145-158.

 

 

Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S. and Nardi, S. 2014. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomics approaches. Front Plant Sci. 5: 1-12.

 

 

Eulgem, T. 2005. Regulation of the Arabidopsisdefense transcriptome.  Trends Plant Sci. 10: 71-78.

 

 

Eulgem, T., and Somssich, I. E. 2007. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol. 10: 366371.

 

 

Ghorbanpour, A., Salimi, A., Ghanbary, M. A. T., Pirdashti, H. and Dehestani, A. 2018. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci hortic. 230:134-141.

 

 

Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol.43: 205-227.

 

 

Gutierrez-Coronado, M. A., Trejo-Lopez, C. and Larque-Saavedra, A. 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem. 36: 563-565.

 

 

Heidarzade, S., Gharanjik, S., Dehestani, A. and Shahriari, D. 2018. Study on enzymatic and biochemical changes in cucumber plant treated with potassium phosphite under Fusarium oxysporum f. sp. radicis-cucumerinum stress. Iran. J. Hortic. Sci. 48: 601-611.

 

 

Hopkins, J. and Tudho, G. R. 1973. Glutathione peroxidase in human red cells in health and disease. British Journal of Haemato Zogy. 25: 563.

 

 

Huffaker, A., Pearce, G., Veyrat, N., Erb, M., Turlings, T. C., Sartor, R., Shene, Z., Briggse, S. P., Vaughana, M. M., Alborna, H. T., Teala, P. E. A. and Schmelza, E. A. 2013. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. PNAS. 110: 5707-5712.

 

 

Jacob, J., Pusuluri, M., Domathoti, B. and Das, I. K. 2019. Magnaporthe grisea infection modifies expression of anti-oxidant genes in finger millet [Eleusine;: coracana (L.) Gaertn.]. J. Plant Pathol. 101: 129-134.

 

 

Jayaraman, J., Norrie, J. and Punja, Z. K. 2011. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 23: 353-361.

 

 

Kareem, T. K., Ugoji, O. E. and Aboaba, O. O. 2016. Biocontrol of Fusariumwilt of cucumber with Trichoderma longibrachiatum NGJ167 (Rifai). Br. Microbiol. Res. J.16: 1-11.

 

 

Keramati, S., Pirdashti, H., Babaeizad, V. and Dehestani, A. 2016. Essential oil composition of sweet basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress. Acta Biol. Hung. 67: 412-423.

 

 

Khosravi, F., Gharanjik, S. and Dehestani, A. 2017. Molecular responses of Phytophthora capsici-challenged cucumber (Cucumis sativus L.) plants as influenced by resistance inducer application. J. Plant Mol. Breed. 5: 1-10.

 

 

Klessig, D. F. and Malamy, J. 1994. The salicylic acid signal in plants. Plant Mol. Biol.26: 1439-58.

 

 

Kondo, T., Sawa, S., Kinoshita, A., Mizuno, S., Kakimoto, T., Fukuda, H. and Sakagami, Y. 2006. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science313: 845-848.

 

 

Lachhab, N., Sanzani, S. M., Fallanaj, F., Youssef, K., Nigro, F., Boselli, M. and Ippolito, A. 2015. Protein hydrolysates as resistance inducers for controlling green mould of citrus fruit. Intl. Citrus Congress. Acta Hortic. 1065(1065): 1593-1598

 

 

Lamsal, B. P., Koegel, R. G. and Gunasekaran, S. 2007. Some physicochemical and functional properties of alfalfa soluble leaf proteins. LWT 40: 1520-1526.

 

 

Lebeda, A., Ryder, E. J., Grube, R., Doležalová, I. and Křístková, E. 2007. Lettuce (Asteraceae; Lactuca spp.). Pp. 377-472. In: Singh R. J. (ed.) Genetic Resources, chromosome engineering, and crop improvement, vegetable crops. Boca Raton, CRC Press, Taylor and Francis Group.

 

 

Li, J. B., Luan, Y. S. and Liu, Z. 2015. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol. Plant155: 248-266.

 

 

Li, J., Yang, Q., Zhang, S. M., Wang, Y. X. and Zhao, X. Y. 2009. Evaluation of biocontrol efficiency and security of a Bacillus subtilis strain B29 against cucumber Fusarium wilt in field. China Veg. 2: 30-33.

 

 

Liu, B., Zhu, Y. Q., Zhou, H. T.,  Zhang, S. Q., Xie, G. L. and Zhang, S. S. 2004. Advances in crop wilt disease. J.  Xiamen Uni. 43: 47-58 (in Chinese).

 

 

Liu, W., Zhao, C., Wang, P., Wang, S., Lin, H. and Qiu, L. 2018. The response of glutathione peroxidase 1 and glutathione peroxidase 7 under different oxidative stresses in black tiger shrimp, Penaeus monodon. Comp. Biochem. Physiol. B 217: 1-13.

 

 

Mandeel, Q. and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathol. 81: 462-469.

 

 

Matsumiya, Y. and Kubo, M. 2011. Soybean peptide: novel plant growth promoting peptide from soybean. Pp. 215-230. In: El-Shemy, H. (ed.) Soybean and Nutrition. Rijeka: InTech Eur. Pub.

 

 

Metraux J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science. 250: 1004-6.

 

 

Mofidnakhaei, M., Abdossi, V., Dehestani, A., Pirdashti, H. and Babaeizad, V. 2016. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Arch. Phytopathol. Plant Protect. 49: 207-221.

 

 

Molavi, E., Aminian, H., Etebarian, H. R. and Shahriari, D. 2009. Investigation the resistance of greenhouse-cucumber cultivars to Fusarium stem and root rot disease (Fusarium oxysporum f. sp. radicis-cucumerinum). J. Agric. 11(1): 177-189.

 

 

Moradi, N., Rahimian, H., Dehestani, A. and Babaeizad, V. 2016. Cucumber Response to Sphaerotheca fuliginea: Differences in antioxidant enzymes activity and pathogenesis-related gene expression in susceptible and resistant genotypes. J. Mol. Plant Breed. 4: 33-40.

 

 

Morris, K., Mackerness, S. A. H., Page, T., John, C. F., Murphy, A. M., Carr, J. P. and Buchanan-Wollaston, V. 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 23: 677-685.

 

 

Najafian, S., Khoshkhui, M., Tavallali, V. and Saharkhiz, M. J. 2009. Effect of salicylic acid and salinity in thyme (Thymus Vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation. Aust. J. Basic Appl. Sci. 3: 2620-2626.

 

 

Neycee, M. A., Nematzadeh, G. A., Dehestani, A. and Alavi, M. 2012a. Assessment of antifungal effects of shoot extracts in chinaberry (Melia azedarach) against 5 phytopathogenic fungi. Int. J. Agron. Plant Produc. 4: 474-477.

 

 

Neycee, M. A., Nematzadeh, G. A., Dehestani, A. and Alavi, M. 2012b. Evaluation of antibacterial effects of chinaberry (Melia azedarach) against gram-positive and gram-negative bacteria. Int. J. Agric Crop Sci. 4: 709-712.

 

 

Oaks, A., Aslam, M. and Boesel, I. 1977. Ammonium and amino acids as regulators of nitrate reductase in corn roots. Plant Physiol. 59: 391-394.

 

 

Paiva, A. L. S., Passaia, G., Lobo, A. K. M., Jardim-Messeder, D., Silveira, J. A. G. and Margis-Pinheiro, M. 2018. Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environ. Exp. Bot. 158: 12-21.

 

 

Qi, P. F., Johnston, A., Balcerzak,M., Rocheleau,H., Harris, L. G., Long, X., Wei, M., Zheng, L. and Ouellet, T. 2012. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol. 116: 413-426.

 

 

Ramezani, M., Rahmani, F. and Dehestani, A. 2017a. Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants. Arch. Phytopathol. Plant Protect. 50: 540-554.

 

 

Ramezani, M., Rahmani, F. and Dehestani, A. 2017b. The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonospora cubensis. Sci. Hortic. 225: 366-372.

 

 

Ramezani, M., Ramezani, F., Rahmani, F. and Dehestani, A. 2018. Exogenous potassium phosphite application improved PR-protein expression and associated physio-biochemical events in cucumber challenged by Pseudoperonospora cubensis. Sci. Hortic. 234: 335-343.

 

 

Romeis, T. 2001. Protein kinases in the plant defense response. Curr Opin Plant Biol.4:407-414.

 

 

Sanzani, S., Schena, L., Girolamo, A., Ippolito, A. and González-Candelas< L. 2010. Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin.  Postharvest Biol. Technol. 56: 1-11.

 

 

Sato, M., Tsuda, K., Wang, L., Coller, J., Watanabe, Y., Glazebrook, J. and Katagiri, F. 2010. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsisimmune signaling. PLoS Pathog. 6: e1001011.

 

 

Singh, A. K. and H. Shichi. 1998. A novel glutathione peroxidase in bovine eye [J]. J. Biol. Chem. 273: 26171-26178.

 

 

Stacey, G., McAlvin, C. B., Kim, S. Y., Olivares, J. and Soto, M. J. 2006. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicas and Medicago truncatula. Plant Physiol.141: 1473-81.

 

 

Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J. and Katagiri, F. 2009. Network properties of robust immunity in plants. PLos Genet. 5: e1000772.

 

 

Vakalounakis, D. J., Wang, Z., Fragkiadakis, G. A., Skaracis, G. N. and Li, D. B. 2004. Characterization of Fusarium oxysporum isolates obtained from cucumber in China by pathogenicity, VCG, and RAPD. Plant Dis. 88: 645-649.

 

 

Van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Significance of inducible defense related proteins in infected plants. Ann. Rev Phytopathol.44: 135-162.

 

 

Xu, X., Wang, R., Chao, J., Lin, Y. E., Jin, Q., He, X., Luo, S. and Wu, T. 2015. The expression patterns of Cucumis sativus WRKY (CsWRKY) family under the condition of inoculation with Phytophthora melonis in disease resistant and susceptible cucumber cultivars. Can. J. Plant Sci. 95: 1121-1131.

 

 

Yang, X. H., Lu, G. Z., Zhao, Z. H., Liu, L. L. and Yao, X. M. 2007. Isolation and identification of Fusarium species from cucumber wilt diseased plants in vegetable greenhouses in northeastern China. J. Shenyang Agric. Uni. 38: 308-311.

 

 

Zhang, S., Zhang, F. and Hua, B. Z. 2008. Enhancement of Phenylalanine Ammonia Lyase, Polyphenoloxidase, and Peroxidase in Cucumber Seedlings by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Infestation. Agric. Sci. China. 7: 82-87.